

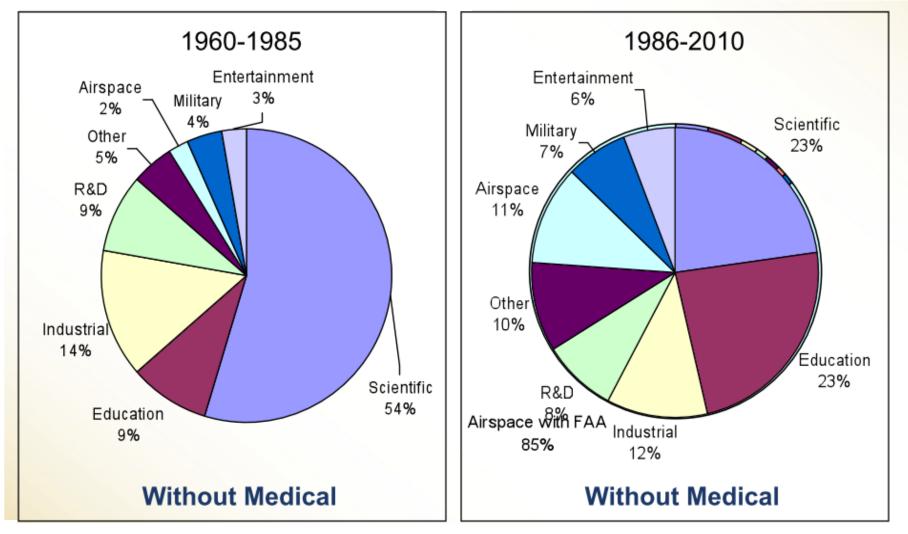
Laser Safety Instructions

- 1. Why LASER safety instructions?
- 2. What is a LASER?
- 3. Why is LASER light dangerous?
- 4. Important terms (DIN EN 60825-1):
 - LASER classes
 - Maximum Permissible Exposure
 - Nominal Hazard Zones
- 5. Safety precautions

1. Why Laser Safety Instructions?

LASER Accident Statistics

Total number of incidents 1345



... approx. 80 % physical injuries (eyes, 70%; skin 10%)

Source: Rockwell Laser Industries Homepage: www.rli.com

LASER Accident Statistics

Total number of incidents 1345

... approx. 80 % physical injuries (eyes, 70%; skin 10%)

Source: Rockwell Laser Industries Homepage: www.rli.com

Top 14 Accidents

Rockwell Laser Industry's top 14 Reported Causes of Laser Related Injuries

- 1. Unanticipated eye exposure during alignment.
- 2. Misaligned optics and upwardly directed beams.
- 3. Available laser eye protection was not used.
- 4. Equipment malfunction.
- 5. Improper method of handling high voltage.
- 6. Intentional exposure of unprotected persons.
- 7. Operators unfamiliar with laser equipment.
- 8. No protection provided for associated hazards.
- 9. Improper restoration of equipment following servicing.
- 10.Incorrect eyewear selection and/or eyewear failure.
- 11.Accidental eye/skin exposure during normal use.
- 12.Inhalation of laser generated fume & viewing of secondary radiation (UV, blue light).
- 13.Laser ignition of fires.
- 14. Photochemical eye or skin exposure.

Top 14 Accidents

Rockwell Laser Industry's top 14 Reported Causes of Laser Related Injuries

- 1. Unanticipated eye exposure during alignment.
- 2. Misaligned optics and upwardly directed beams.
- 3. Available laser eye protection was not used.
- 4. Equipment malfunction.
- 5. Improper method of handling high voltage.
- 6. Intentional exposure of unprotected persons.
- 7. Operators unfamiliar with laser equipment.
- 8. No protection provided for associated hazards.
- 9. Improper restoration of equipment following servicing.
- 10.Incorrect eyewear selection and/or eyewear failure.
- 11.Accidental eye/skin exposure during normal use.
- 12.Inhalation of laser generated fume & viewing of secondary radiation (UV, blue light).
- 13.Laser ignition of fires.
- 14. Photochemical eye or skin exposure.

The Teaching and Research Environment

• 100% Protection?

- Not possible to have industrial safety levels fully enclosed systems
- Risk should be **As Low As Reasonably Achievable** (ALARA principle)

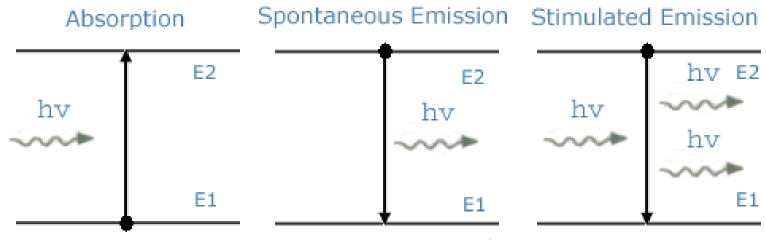
• Multi user access

- There can be more than one laser in use in the lab
- There can be more than one wavelength in use at one time

Versatile Systems

- Changing wavelength
- Re-alignments
- Repairs

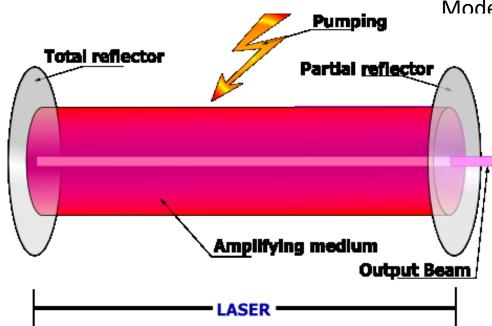
Safety Awareness is CRUCIAL!


2. What is a LASER?

LASER: Working Principle

Light Amplification by Stimulated Emission of Radition

LASER media:


Solids such as Nd:YAG, Ti:Sapphire, Diodes Liquids such as organic dyes Gases such as He-Ne, Ar-Kr, Excimer

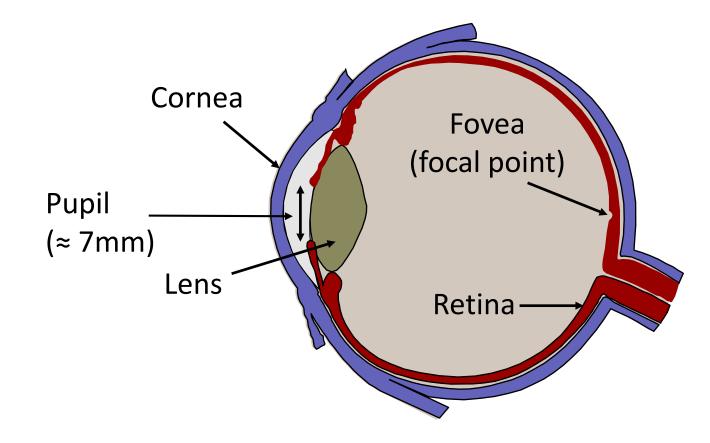
E1: Lower Energy State, E2: Higher Energy State

LASER: Working Principle

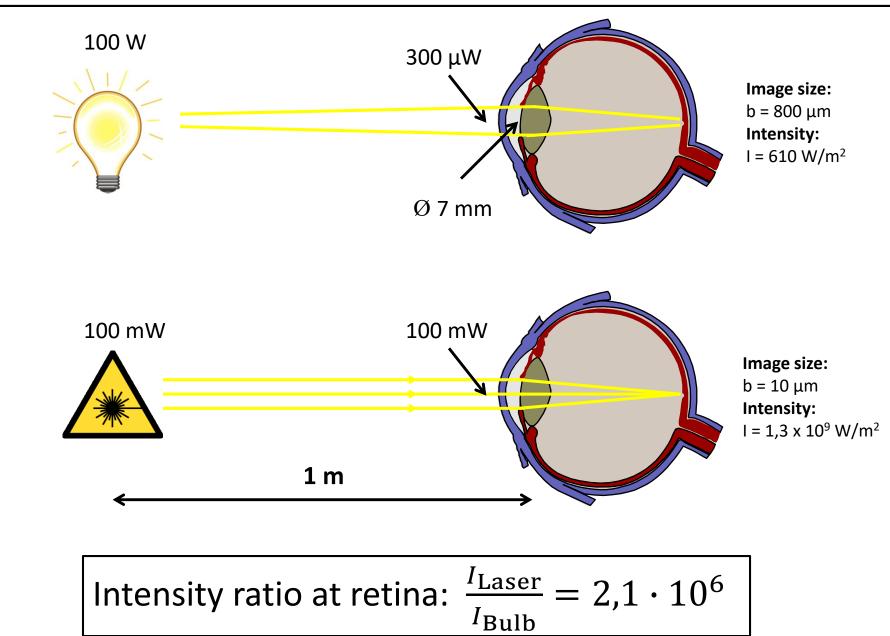
Light Amplification by Stimulated Emission of Radition

LASER media:

Solids such as Nd:YAG, Ti:Sapphire, Diodes Liquids such as organic dyes Gases such as He-Ne, Ar-Kr, Excimer

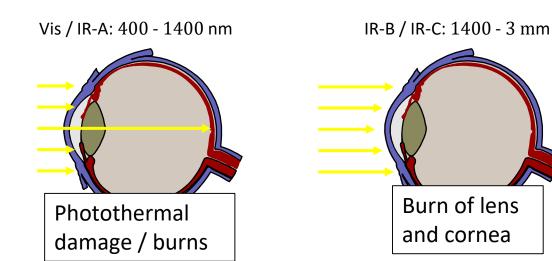

LASER modes:

Continuous Wave (> 0.25 s) Pulsed (> 1 µs to 0,25 s) Giant pulsed (1 µs to 1 ns) Modelocked (< 1 ns)

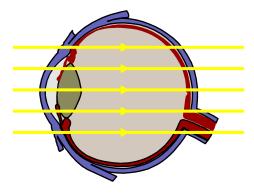

LASER light ...

- ... is almost monochromatic
- ... is highly collimated
- ... extremely intense

3. Why is LASER Light Dangerous?

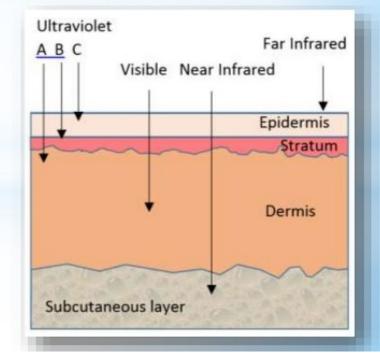


Hazard: Light Bulb vs. LASER



Laser Hazards of the Eye

Micro / Radio: > 3 mm


All high power lasers can cause skin burns!

Ultra Violet radiation (UV): is a particular source of danger even at low power

Ultra Violet Sources in the Lab: include Lasers, e.g. optical parametric amplifier (OPA) and UV lamps e.g. xenon Lamps

Effects of exposure on skin

- mild erythema (sunburn)
- accelerated skin ageing
- skin cancer.
- UV C (180-280 nm) Absorbed in Ozone layer
 UV B (280-315 nm) Deep strata of skin at risk
 UV A (315-400 nm) Tanning, Skin at risk

4. Important Terms

Laser Classes

Maximum Permissible Exposure

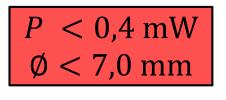
Nominal Hazard Zones

$1 \rightarrow 1 M \rightarrow 2 \rightarrow 2 M \rightarrow 3 R \rightarrow 3 B \rightarrow 4$

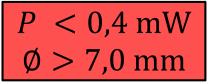
Increasing Hazard

Direct exposure hazardous (2, 2M, 3R, 3B, 4)

Specular viewing hazardous (2, 2M, 3R, 3B, 4)

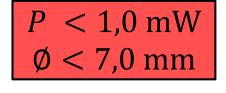


Diffusive reflections hazardous (3R, 3B, 4)

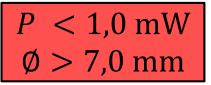

cp.: DIN EN 60825-1 / VDE 0837-1

Laser Class 1 & 1M (Eye-Safe)

LASER RADIATION DO NOT VIEW WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT


302,5 nm $\leq \lambda \leq 4000$ nm

- Incapable of producing damaging radiation levels
- No precautions required
- No labeling obligation
- Laser of any class having been completely enclosed so that no hazardous radiation can escape and cause injury


- Pupil of the eye reduces potential intensity
- There is the potential for hazardous exposure if optical viewing aids are used

Laser Class 2 & 2M

LASER RADIATION DO NOT STARE INTO BEAM CLASS 2 LASER PRODUCT

LASER RADIATION DO NOT STARE INTO THE BEAM OR VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 2M LASER PRODUCT

 $400 \text{ nm} \le \lambda \le 700 \text{ nm}$

- Only hazardous if one stare directly into the beam (> 0,25 s)
- No Precaution required: Aversion reaction / eyelid closure reflex
- Safety instructions required

- Pupil of the eye reduces potential intensity
- There is the potential for hazardous exposure if optical viewing aids are used

Laser Class 3R & 3B

LASER RADIATION AVOID DIRECT EYE EXPOSURE CLASS 3R LASER PRODUCT CAUTION - CLASS 3B LASER RADIATION WHEN OPEN. AVOID EXPOSURE TO BEAM

302,5 nm $\leq \lambda \leq 1$ mm

 $P_{\rm Vis} < 5.0 \,\rm mW$

- Direct look into beam is hazardous
- Direct beam exposure should be very unlikely
- Precaution: Adequate eye protection
- Safety instructions required

- Exposure of eye and skin is hazardous
- Can cause fire
- Precaution: Laser goggles and safety gloves

cp.: DIN EN 60825-1 / VDE 0837-1

Laser Class 4

CAUTION - CLASS 4 VISIBLE AND INVISIBLE LASER RADIATION WHEN OPEN AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION

- Will cause *severe* eye damage and burn the skin.
- Even diffuse reflections can cause retinal injuries.
- Can cause fire and explosions
- Direct beam exposure should be very unlikely
- Precaution: Laser alignment googles only for P < 100 W, else always safety goggles
- Safety instructions required

- The MPE is the highest level of radiation to which a person can be exposed without hazardous effects.
- The MPE is specified in W/m² for CW lasers and in J/m² for pulsed lasers. The value depends on wavelength, exposure duration and pulse repetition frequency.
- Exposure to radiation levels in excess of the MPE may result in adverse biological effects, such as injury to the skin and/or eyes.

Example: CW laser, 400 nm $\leq \lambda \leq$ 700 mm, duration 0,25 s:

MPE =
$$25,6\frac{W}{m^2}$$
 = 3,9 mW/pupil area

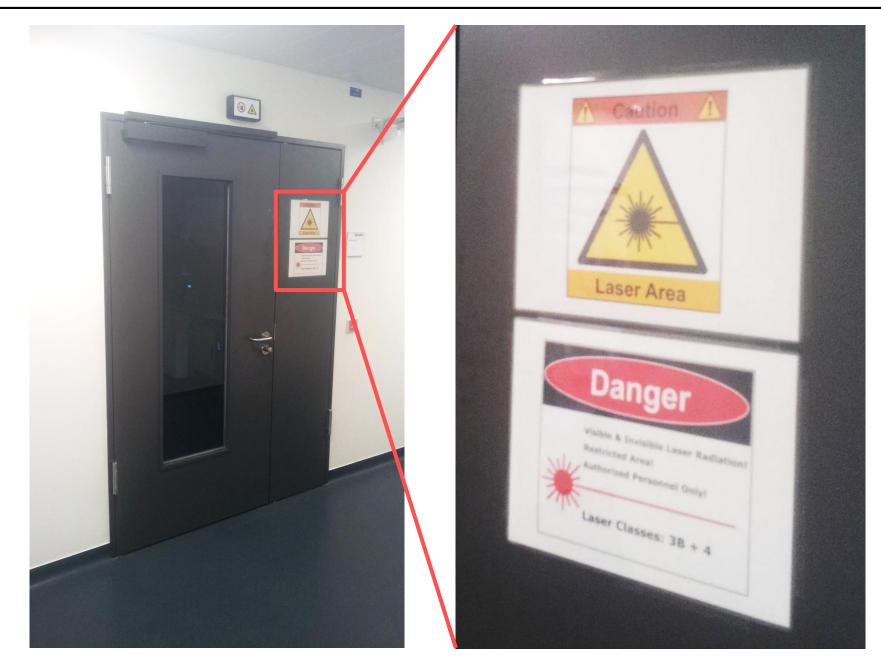
cp.: guideline 2006/25/EG

- The NHZ is the location around the laser within which a person can be exposed to radiation in excess of the MPE.
- When Class 3b and 4 lasers are unenclosed, the Laser Safety Officer must establish a NHZ.
- People may be injured if they are within the perimeter of this zone while the laser is in operation.

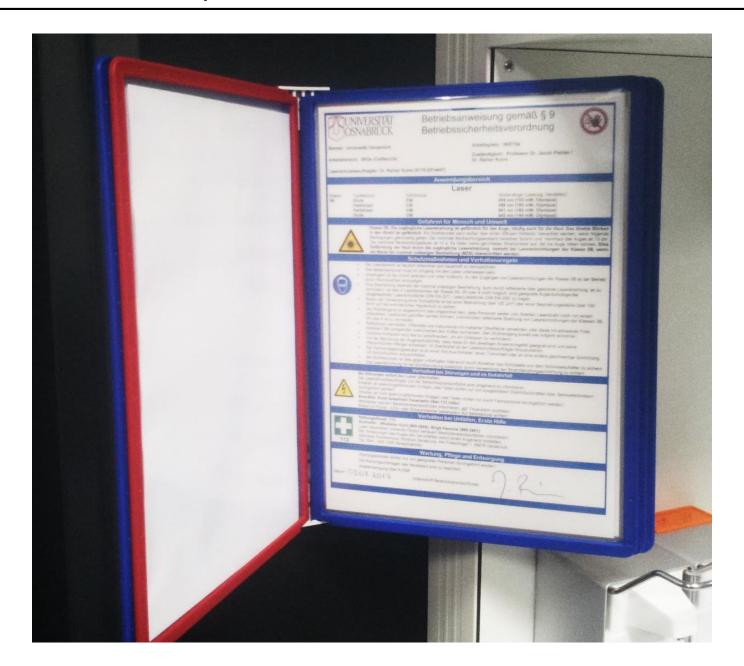
5. Safety Precautions

1. Engineering Controls

- Design the experiment/lab in such a way that dangerous exposure cannot happen. Reduce power during alignment
- Use beam enclosures and place beam blocks where possible
- Ensure all optics and mounts are securely fixed to optical table. Many incidents happen with an accidentally deflected beam
- Use a designated area with interlocks and warning lights on the entrances


2. Administrative Controls

- Laser Safety Training
- Designated Areas
- Good Signage


3. Personal Protection

- Safety Eye wear, Protective clothing
- Awareness and good sense
 - do I need to be here?
 - what are others in the laboratory doing?

Laser Areas and Operation Instructions at iBiOs

Laser Areas and Operation Instructions at iBiOs

Personal Protective Equipment for Eyes

- PPE is not required for class 2 or 3R lasers unless intentional direct viewing > 0.25 seconds is necessary.
- PPE for eyes exposed to Class 3B or 4 lasers is mandatory. Eyewear with side protection is best. Consider these factors when selecting eyewear:
 - Optical Density (OD) of the eyewear
 - Laser Power and/or pulse energy
 - Laser Wavelength(s)
 - Exposure time criteria
 - Maximum Permissible Exposure (MPE)
 - Safety or alignment goggles

Schutz- stufe	Maximaler spektraler Trans-	Maximale Leistungs- (E) und/oder Energiedichte (H) im Wellenlängenbereich Maximum power (E) and energy (H) density in the wavelength range								
Scale number	missionsgrad bei den Laser-	180 nm> 315 nm			> 315 nm> 1400 nm			> 1400 nm> 1000 µm		
	wellenlängen	Für Prüfbedingung For test condition / Impulsdauer in s								
	Maximum spectral trans- mittance for laser wavelength	D >3·10⁴	I,R 10 ⁻⁹ bis 3 ∙10 ⁴	M < 10 ⁻⁹	D > 5 · 10 ⁻⁴	I,R 10 ⁻⁹ bis 5 • 10 ⁻⁴	M < 10 ⁻⁹	D >0,1	I,R 10 ⁻⁹ bis 0,1	M < 10 ⁻⁹
	τ(λ)	E _D W/m²	H _{I,R} J/m²	E _M W/m²	E _D W/m²	H _{I,R} J/m²	H _M J/m²	E _D W/m²	H _{I,R} J/m²	E _M W/m²
L1	10-1	0,01	3·10 ²	3.1011	10 ²	0,05	1,5·10 ⁻³	104	10 ³	1012
L2	10-2	0,1	3·10 ³	3.1012	10 ³	0,5	1,5·10 ⁻²	105	104	1013
L3	10-3	1	3·10 ⁴	3·10 ¹³	104	5	0,15	106	105	1014
L4	10-4	10	3·10⁵	3.1014	105	50	1,5	107	10 ⁶	1015
L5	10-5	100	3·10 ⁶	3·10 ¹⁵	10 ⁶	5·10 ²	15	10 ⁸	107	1016
L6	10-6	10 ³	3·10 ⁷	3.1016	107	5·10 ³	1,5·10 ²	10 ⁹	10 ⁸	1017
L7	10-7	104	3·10 ⁸	3.1017	10 ⁸	5·10 ⁴	1,5·10 ³	1010	10 ⁹	1018
L8	10 ⁻⁸	105	3·10 ⁹	3.1018	10 ⁹	5·10 ⁵	1,5·10 ⁴	1011	1010	1019
L9	10 ⁻⁹	106	3·10 ¹⁰	3·10 ¹⁹	1010	5·10 ⁶	1,5·10 ⁵	1012	1011	10 ²⁰
L10	10 ⁻¹⁰	107	3·10 ¹¹	3·10 ²⁰	1011	5·10 ⁷	1,5·10 ⁶	1013	1012	1021

Reference: EN 207 Tab. B.1.

Source: "Guide to Laser Safety", LaserVision GmbH

Schutzstufe nach DIN EN 208 <i>Scale number</i> acc. to EN 208	Dauerstrichlaser und Impulslaser mit einer Impulslänge > $2 \cdot 10^{-4}$ s Maximale Laserleistung in W <i>CW lasers and pulsed lasers with a</i> <i>pulse length of > $2 \cdot 10^{-4}$ s</i> <i>Max. laser power in W</i>	gepulste Laser mit einer Impulslänge > 10 ⁻⁹ – 10 ⁻⁴ s Maximale Impulsenergie in J Pulsed lasers with a pulse length > 10 ⁻⁹ – 10 ⁻⁴ s Max. pulse energy in J
R1	0,01 W	2 · 10 ⁻⁶
R2	0,1 W	2 · 10 ⁻⁵
R3	1 W	2 · 10 ⁻⁴
R4	10 W	2 · 10 ⁻³
R5	100 W	2 · 10 ⁻²

Quelle: EN 208

Reference: EN 208

Source: "Guide to Laser Safety", LaserVision GmbH

Don'ts (or little mistakes with BIG consequences)

- Do not directly look into beam
- Do not expose your skin to beam (use e.g. indicator cards)
- Do not open apertures/covers of microscope/system if laser emission is possible
- Do not touch laser optics or try to realign a laser if you are not authorized.
- Do not avoid safety devices (goggles, indicator cards)
- Do not wear rings, bracelets or any other reflecting materials
- Do not leave laser switched on if not necessary (long term experiments)
- Do not allow non-authorized people usage of laser systems or leave them alone with lasers switched on

Dos

- Mount laser to optical breadboard or bench before usage
- Close lab doors & laser safety curtains to protect other people
- Knock before entering a lab with flashing laser warn lamp
- Reduce laser power as much as possible for aligment procedures
- In case of any malfunction, immediately inform supervisor and laser safety officer

- Switch off lasers if possible
- Contact first aider
- Call emergency: 112
- Turn to a doctor (eye specialist or dermatologist)
- Inform supervisor and laser safety officer

Betriebsärztlicher Dienst Apl. Prof. Dr. Henning Allmers

Dermatologie, Umweltmedizin, Gesundheitstheorie Universität Osnabrück Sedanstr. 115 49090 Osnabrück Phone.: 0541/3329 Room: 70/B25 Paracelsus Kliniken Augenabteilung Am Natruper Holz 69 49076 Osnabrück Tel.: 0541/609220 (Praxis) Ihre Hautärzte Dr. med. Th. Rosenbach und Kollegen Lotter Str. 58-61 49078 Osnabrück Tel.: 0541/3 35 00-0 (Praxis)

Complacency is your Enemy!

If you are in doubt or you do not feel you are working with safe practices or equipment:

Contact your supervisor and laser safety officer!

It is your right to work safely no matter the cost or inconvenience!

Rainer Kurre Tel.: 0541-969-7338 Email: <u>rainer.kurre@uos.de</u> Web: <u>www.ibios.uos.de</u> Instructions online: <u>https://www.ibios.uos.de/Service/Safety%20Instructions.html</u>

Thank you for your attention!!