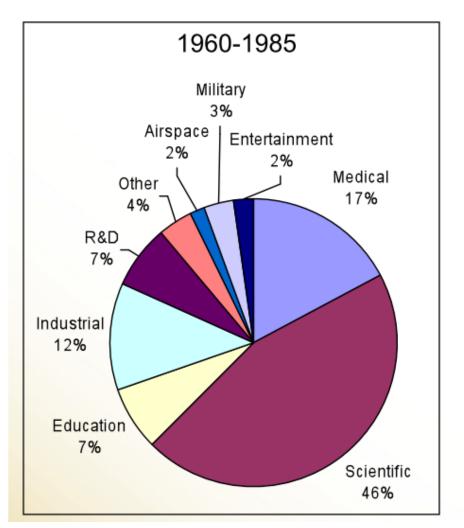
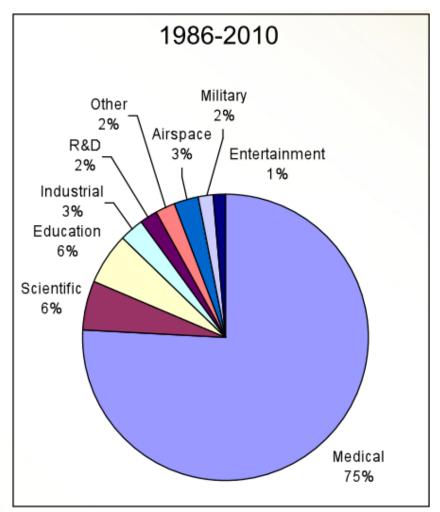


Belehrung Lasersicherheit

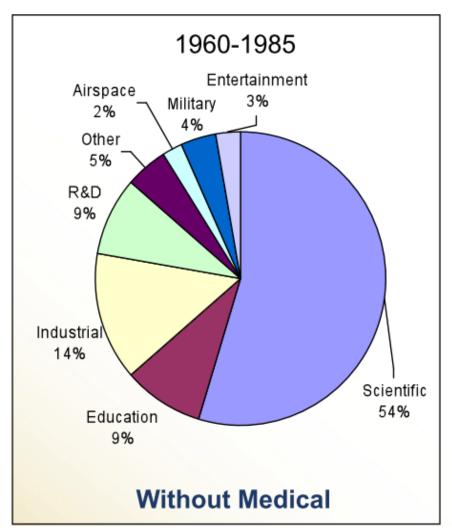

Übersicht

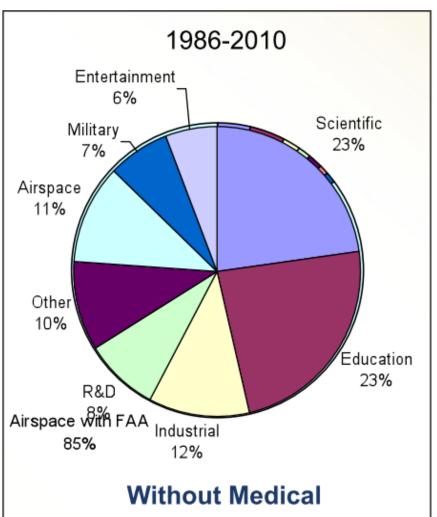

- 1. Warum sind Lasersicherheitsbelehrungen erforderlich?
- 2. Was ist ein LASER?
- 3. Warum ist LASER Licht besonders gefährlich?
- 4. Wichtige Begriffe (DIN EN 60825-1):
 - LASER-Klassen
 - Maximal zulässige Exposition
 - Nominelle Gefahrenzonen
- 5. Sicherheitsvorkehrungen

1. Warum Laserschutzbelehrungen?

LASER-Unfallstatistik

Gesamtzahl Unfälle 1960-2010: 1345




... ca. 80 % körperliche Verletzungen (Augen 70%, Haut 10%)

Quelle: Rockwell Laser Industries Homepage: www.rli.com

LASER-Unfallstatistik

Gesamtzahl Unfälle 1960-2010: 1345

... ca. 80 % körperliche Verletzungen (Augen 70%, Haut 10%)

Quelle: Rockwell Laser Industries Homepage: www.rli.com

Top 14 Unfallursachen

Die 14 häufigsten von der Rockwell Laserindustrie gemeldeten Ursachen

- 1. Unerwartete Augenexposition während der Justage.
- 2. Falsch ausgerichtete Optiken und nach oben gerichtete Strahlen.
- 3. Verfügbarer Laser-Augenschutz wurde nicht verwendet.
- 4. Fehlfunktion der Ausrüstung.
- 5. Unsachgemäße Handhabung von Hochspannung.
- 6. Beabsichtigte Exposition ungeschützter Personen.
- 7. Personen, die mit der Laserausrüstung nicht vertraut sind.
- 8. Kein Schutz für die damit verbundenen Gefahren vorgesehen.
- 9. Unsachgemäße Wiederherstellung der Ausrüstung nach der Wartung.
- 10. Falsche Auswahl der Schutzbrille und/oder Versagen der Schutzbrille.
- 11. Unbeabsichtigte Exposition der Augen/Haut bei normalem Gebrauch.
- 12. Einatmen von durch den Laser erzeugten Dämpfen und Exposition von Sekundärstrahlung (UV, blaues Licht).
- 13. Entzündung von Bränden durch Laser.
- 14. Photochemische Augen- oder Hautexposition.

Source: Rockwell Laser Industries Homepage: www.rli.com

Top 14 Unfallursachen

Die 14 häufigsten von der Rockwell Laserindustrie gemeldeten Ursachen

- 1. Unerwartete Augenexposition während der Justage.
- 2. Falsch ausgerichtete Optiken und nach oben gerichtete Strahlen.
- 3. Verfügbarer Laser-Augenschutz wurde nicht verwendet.
- 4. Fehlfunktion der Ausrüstung.
- 5. Unsachgemäße Handhabung von Hochspannung.
- 6. Beabsichtigte Exposition ungeschützter Personen.
- 7. Personen, die mit der Laserausrüstung nicht vertraut sind.
- 8. Kein Schutz für die damit verbundenen Gefahren vorgesehen.
- 9. Unsachgemäße Wiederherstellung der Ausrüstung nach der Wartung.
- 10. Falsche Auswahl der Schutzbrille und/oder Versagen der Schutzbrille.
- 11. Unbeabsichtigte Exposition der Augen/Haut bei normalem Gebrauch.
- 12. Einatmen von durch den Laser erzeugten Dämpfen und Exposition von Sekundärstrahlung (UV, blaues Licht).
- 13. Entzündung von Bränden durch Laser.
- 14. Photochemische Augen- oder Hautexposition.

Source: Rockwell Laser Industries Homepage: www.rli.com

Im Lehr- und Forschungsumfeld

100%iger Schutz?

- Es ist nicht möglich, industrielle Sicherheitsniveaus zu erreichen
 → vollständig geschlossene Systeme
- Das Risiko sollte so gering wie vernünftigerweise erreichbar sein

Zugang mehrerer Benutzer

- Es kann mehr als ein Laser im Labor verwendet werden.
- Es kann mehr als eine Wellenlänge gleichzeitig verwendet werden

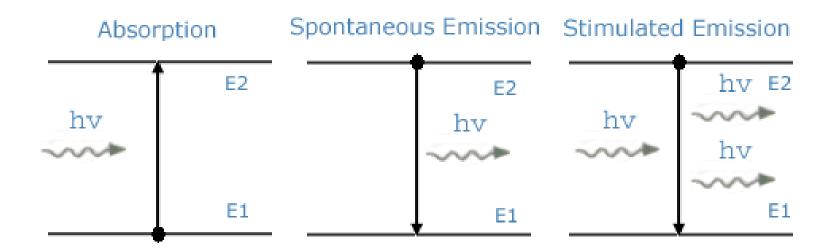
Vielseitige Systeme

- Wechselnde Wellenlängen
- Justagen/Umbau
- Reparaturen

Sicherheitsbewusstsein ist entscheidend!

2. Was ist ein LASER?

LASER: Funktionsprinzip


Light Amplification by Stimulated Emission of Radition

LASER Medien:

Festkörper wie Nd:YAG, Ti:Sapphire, Diodes

Flüssigkeiten: Z.B. Organische Farstoffe

Gase wie He-Ne, Ar-Kr, Excimer

E1: Lower Energy State, E2: Higher Energy State

LASER: Funktionsprinzip

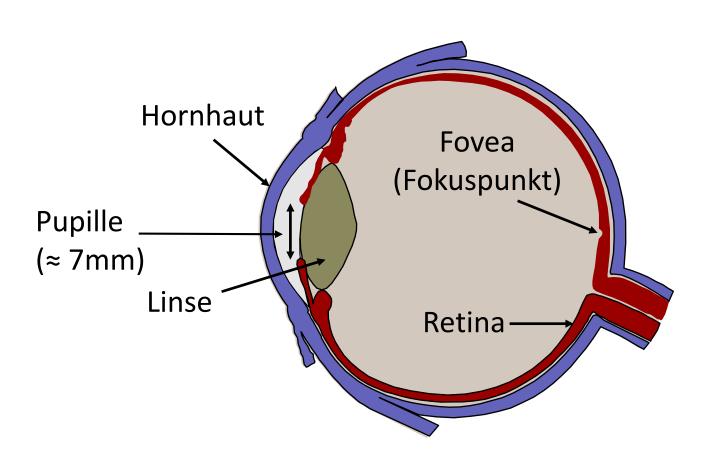
Light Amplification by Stimulated Emission of Radition

LASER Medien:

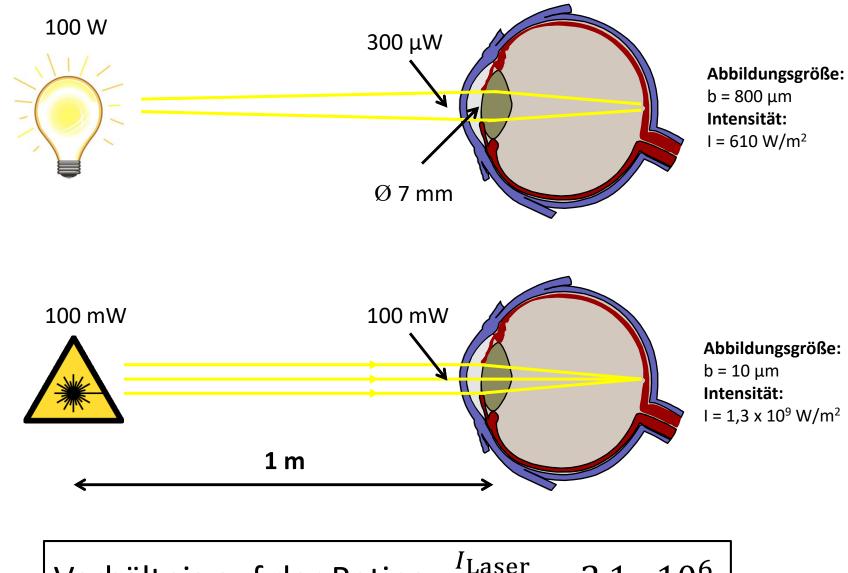
Festkörper wie Nd:YAG, Ti:Sapphire, Diodes

Flüssigkeiten: Z.B. Organische Farstoffe

Gase wie He-Ne, Ar-Kr, Excimer


LASER Modi:

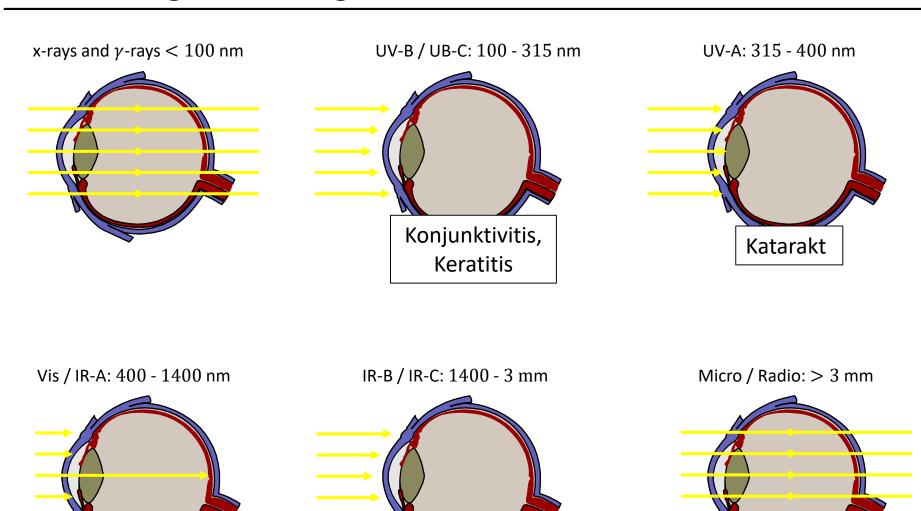
Dauerstrahl (> 0.25 s)
Gepulst (> 1 μs to 0,25 s)
Giant pulsed (1 μs to 1 ns)
Modelocked (< 1 ns)


LASER-Licht

- ist nahezu monochromatisch
- ist hochgradig kollimiert
- kann extreme Intensitäten aufweisen

3. Warum ist LASER-Licht gefährlich?

Gefährdung: Glühbirne vs. LASER



Verhältnis auf der Retina: $\frac{I_{\text{Laser}}}{I_{\text{Bulb}}} = 2,1 \cdot 10^6$

Gefährdungen des Auges durch LASER-Licht

Photothermische

Schäden

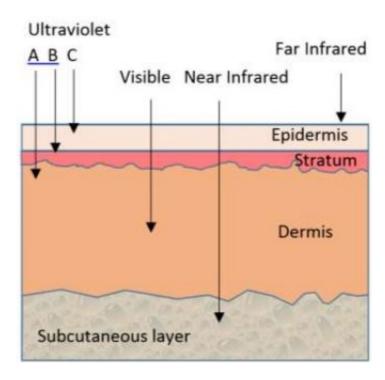
Verbrennung der

Linse und Hornhaut

Gefährdungen des Auges durch LASER-Licht

Alle Hochleistungslaser können Hautverbrennungen verursachen

Ultraviolette Strahlung (UV): Ist eine besondere Gefahrenquelle auch bei geringer Leistung.


Ultraviolett-Quellen im Labor: Dazu gehören Laser, z. B. optischer parametrischer Verstärker (OPA) und UV-Lampen.

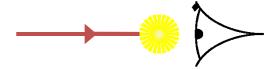
Auswirkungen der Exposition auf die Haut

- "Leichte" Erytheme (Sonnenbrand),
- Beschleunigte Hautalterung,
- > Hautkrebs.

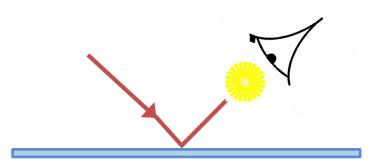
Epidermis

- UV C (180-280 nm): Absorbiert in der Ozonschicht,
- > UV B (280-315 nm) Tiefe Schichten der Haut,
- ➤ UV A (315-400 nm) Bräunung / Gefährdung.

4. Wichtige Begriffe


Laserklassen

Maximal zulässige Exposition


Nominale Gefährdungszonen

$$1 \rightarrow 1M \rightarrow 2 \rightarrow 2M \rightarrow 3R \rightarrow 3B \rightarrow 4$$

Steigende Gefährdung

Direkte Exposition gefährlich (2, 2M, 3R, 3B, 4)

spiegelnde Betrachtung gefährlich (2, 2M, 3R, 3B, 4)

Gefährliche diffuse Reflexionen (3R, 3B, 4)

Laser-Klasse 1 & 1M ("sicher")

P < 0,4 mW Ø < 7,0 mm

P < 0,4 mW Ø > 7,0 mm

$$302,5 \text{ nm} \le \lambda \le 4000 \text{ nm}$$

- Nicht in der Lage, schädliche Strahlung zu erzeugen
- Keine Vorsichtsmaßnahmen erforderlich
- Keine Kennzeichnungspflicht
- Laser jeder Klasse, die vollständig geschlossen sind, so dass keine gefährliche Strahlung austreten und Verletzungen verursachen kann

- Die Pupille des Auges reduziert die mögliche Intensität
- Bei Verwendung von optischen Sehhilfen besteht die Möglichkeit einer gefährlichen Exposition

vgl.: DIN EN 60825-1 / VDE 0837-1

Laser-Klasse 2 & 2M

LASER RADIATION
DO NOT STARE INTO THE BEAM
OR VIEW DIRECTLY WITH
OPTICAL INSTRUMENTS
CLASS 2M LASER PRODUCT

$$400 \text{ nm} \le \lambda \le 700 \text{ nm}$$

- Nur gefährlich, wenn man direkt in den Strahl starrt (> 0,25 s)
- Keine Vorsichtsmaßnahmen erforderlich (Aversionsreaktion / Augenlidschlussreflex)
- Sicherheitsbelehrung erforderlich

- Die Pupille des Auges reduziert die mögliche Intensität
- Bei Verwendung von optischen Sehhilfen besteht die Möglichkeit einer gefährlichen Exposition

LASER RADIATION
AVOID DIRECT
EYE EXPOSURE
CLASS 3R LASER PRODUCT

 $P_{\text{Vis}} < 5.0 \text{ mW}$

CAUTION - CLASS 3B LASER RADIATION WHEN OPEN. AVOID EXPOSURE TO BEAM

P < 500,0 mW

 $302,5 \text{ nm} \le \lambda \le 1 \text{ mm}$

- Direkter Blick in den Strahl ist gefährlich
- Direkte Strahlenexposition sollte sehr unwahrscheinlich sein
- Vorsichtsmaßnahmen:
 Angemessener Augenschutz
- Sicherheitsbelehrung erforderlich

- Exposition von Augen und Haut ist gefährlich
- Kann Brand verursachen
- Vorsichtsmaßnahmen: Laserschutzbrille und Schutzhandschuhe

P > 500,0 mW

- Verursacht schwere Augenschäden und Verbrennungen der Haut.
- Selbst diffuse Reflektionen können Netzhautverletzungen verursachen.
- Kann Feuer und Explosionen verursachen
- Direkte Strahlenexposition sollte sehr unwahrscheinlich sein
- Vorsichtsmaßnahmen: Laserausrichtungsbrille nur für P<100 W, sonst immer Schutzbrille
- Sicherheitsbelehrung erforderlich

Maximal zulässige Exposition (MZE)

- Die MZE ist der höchste Strahlungswert, dem eine Person ohne gefährliche Auswirkungen ausgesetzt werden kann.
- Die MZE wird bei CW-Lasern in W/m² und bei gepulsten Lasern in J/m² angegeben. Der Wert hängt von der Wellenlänge, der Belichtungsdauer und der Pulswiederholfrequenz ab.
- Eine Exposition gegenüber Strahlungswerten, die über der MZE liegen, kann zu schädlichen biologischen Wirkungen führen, z. B. zu Verletzungen der Haut und/oder der Augen.

Beispiel: CW LASER, $400 \text{ nm} \le \lambda \le 700 \text{ mm}$, Dauer 0,25 s:

$$MZE = 25.6 \frac{W}{m^2} = 3.9 \text{ mW/Pupillenfläche}$$

Nominelle Gefährdungszone (NGZ)

- Die NGZ ist der Bereich um den Laser herum, in dem eine Person einer Strahlung ausgesetzt sein kann, die über der MZE liegt.
- Bei Lasern der Klassen 3b und 4, die nicht umschlossen sind, muss der Laserschutzbeauftragte eine NGZ einrichten.
- Personen können verletzt werden, wenn sie sich während des Betriebs des Lasers innerhalb dieses Bereichs aufhalten.

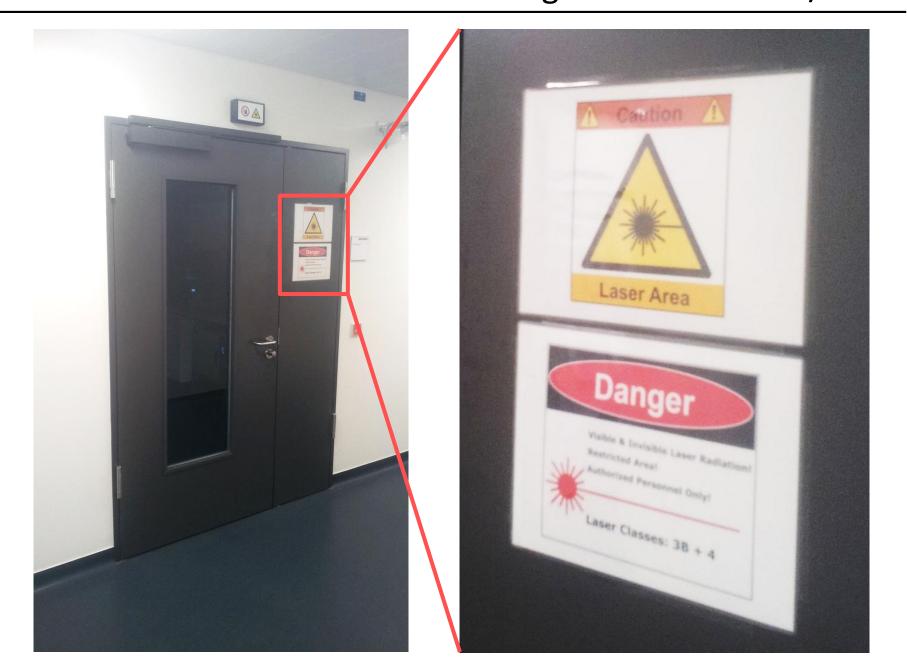
5. Sicherheitsvorkehrungen

Drei Sicherheitsebenen

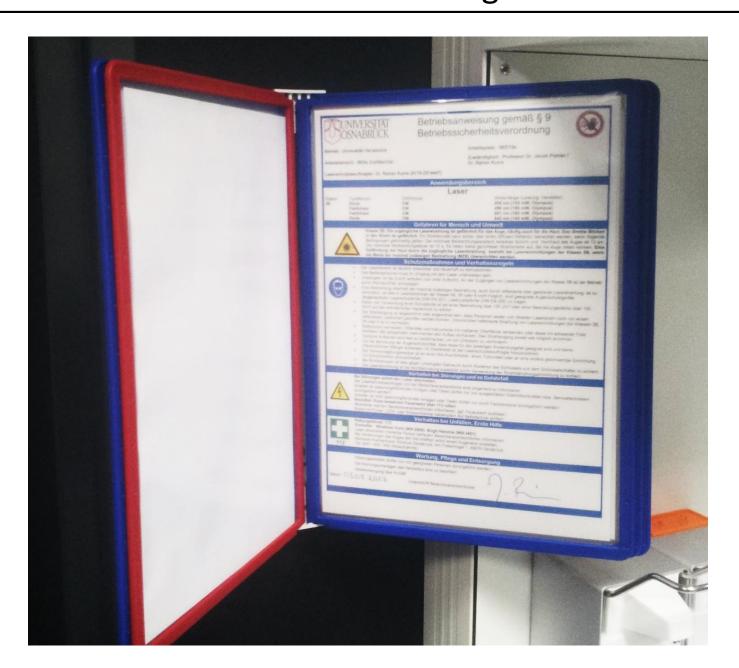
1. Technische Ebene:

- Gestalten Sie das Experiment/Labor so, dass eine gefährliche Exposition nicht erfolgt.
- Reduzieren Sie die Leistung während der Ausrichtung.
- Verwenden Sie Strahlenkapseln und platzieren Sie Strahlenblöcke, wo dies möglich ist.
- Stellen Sie sicher, dass alle Optiken und Halterungen sicher am optischen Tisch befestigt sind.
- Viele Zwischenfälle passieren durch einen versehentlich abgelenkten Strahl
- Verwenden Sie einen ausgewiesenen Bereich mit Verriegelungen und Warnleuchten an den Eingängen

2. Administrative Ebene


- Laser-Sicherheitstraining
- Ausgewiesene Bereiche
- Gute Beschilderung

3. Persönlicher Schutz


- Schutzbrille / Schutzkleidung
- Achtsamkeit und gesunder Menschenverstand
- Muss ich hier sein?
- Was machen die anderen im Labor?

Laserbereiche und Betriebsanweisungen im CellNanOs/iBiOs

Laserbereiche und Betriebsanweisungen im CellNanOs/iBiOs

Persönliche Schutzausrüstung (PSA) für die Augen

- Für Laser der Klassen 2 oder 3R ist keine PSA erforderlich, es sei denn, ein absichtlicher direkter Blick über 0,25 Sekunden ist notwendig.
- PSA für Augen, die Lasern der Klassen 3B oder 4 ausgesetzt sind, ist obligatorisch.
- Am besten sind Brillen mit Seitenschutz.
- Berücksichtigen Sie bei der Auswahl der Schutzbrille die folgenden Faktoren:
 - Optische Dichte (OD) der Schutzbrille, Laserleistung und/oder Pulsenergie, Laser-Wellenlänge(n)Kriterien für die Expositionszeit, Maximal zulässige Exposition, Schutz- oder Justagebrille?

Die Auswahl der richtigen Schutzbrille

Schutz- stufe Scale number	Maximaler spektraler Trans- missionsgrad bei den Laser- wellenlängen Maximum spectral trans- mittance for laser wavelength	Maximale Leistungs- (E) und/oder Energiedichte (H) im Wellenlängenbereich Maximum power (E) and energy (H) density in the wavelength range								
		180 nm} 315 nm			> 315 nm> 1400 nm			> 1400 nm 1000 μm		
number		Für Prüfbedingung For test condition / Impulsdauer in s								
		D >3·10 ⁴	I,R 10 ⁻⁹ bis 3 · 10 ⁴	M < 10 ⁻⁹	D > 5·10 ⁻⁴	I,R 10 ⁻⁹ bis 5 · 10 ⁻⁴	M < 10 ⁻⁹	D >0,1	I,R 10 ⁻⁹ bis 0,1	M < 10 ⁻⁹
	$\tau(\lambda)$	E _D W/m²	H _{I,R} J/m²	E _M W/m²	E _D W/m²	H _{I,R} J/m²	H _M J/m²	E_{D} W/m ²	H _{I,R} J/m²	E _M W/m²
L1	10 ⁻¹	0,01	3·10 ²	3·10 ¹¹	10 ²	0,05	1,5·10 ⁻³	104	10 ³	10 ¹²
L2	10-2	0,1	3·10³	3·10 ¹²	10 ³	0,5	1,5·10 ⁻²	105	104	10 ¹³
L3	10 ⁻³	1	3.104	3·10 ¹³	104	5	0,15	10 ⁶	105	1014
L4	10 ⁻⁴	10	3.105	3·10 ¹⁴	105	50	1,5	10 ⁷	10 ⁶	10 ¹⁵
L5	10 ⁻⁵	100	3·10 ⁶	3·10 ¹⁵	10 ⁶	5·10 ²	15	108	10 ⁷	10 ¹⁶
L6	10 ⁻⁶	10 ³	3·10 ⁷	3·10 ¹⁶	10 ⁷	5·10 ³	1,5·10 ²	109	108	10 ¹⁷
L7	10 ⁻⁷	104	3.108	3·10 ¹⁷	108	5·10 ⁴	1,5·10 ³	10 ¹⁰	10 ⁹	10 ¹⁸
L8	10 ⁻⁸	105	3·10 ⁹	3·10 ¹⁸	109	5·10 ⁵	1,5.104	1011	10 ¹⁰	10 ¹⁹
L9	10 ⁻⁹	10 ⁶	3·10 ¹⁰	3·10 ¹⁹	10 ¹⁰	5·10 ⁶	1,5·10 ⁵	10 ¹²	1011	10 ²⁰
L10	10-10	10 ⁷	3·10 ¹¹	3·10 ²⁰	1011	5·10 ⁷	1,5·10 ⁶	10 ¹³	10 ¹²	1021

Reference: EN 207 Tab. B.1.

Quelle: "Guide to Laser Safety", LaserVision GmbH

Die Auswahl der richtigen Schutzbrille

Schutzstufe nach DIN EN 208 Scale number acc. to EN 208	Dauerstrichlaser und Impulslaser mit einer Impulslänge > 2 · 10 ⁻⁴ s Maximale Laserleistung in W CW lasers and pulsed lasers with a pulse length of > 2 · 10 ⁻⁴ s Max. laser power in W	gepulste Laser mit einer Impulslänge > 10 ⁻⁹ – 10 ⁻⁴ s Maximale Impulsenergie in J Pulsed lasers with a pulse length > 10 ⁻⁹ – 10 ⁻⁴ s Max. pulse energy in J
R1	0,01 W	2 · 10 ⁻⁶
R2	0,1 W	2 · 10 ⁻⁵
R3	1 W	2 · 10-4
R4	10 W	2 · 10 ⁻³
R5	100 W	2 · 10 ⁻²

Quelle: EN 208 Reference: EN 208

Source: "Guide to Laser Safety", LaserVision GmbH

Dos & Don'ts für Arbeiten mit Lasers

Don'ts (oder kleine Fehler mit GROßEN Folgen)

- Nicht direkt in den Strahl blicken,
- Setzen Sie Ihre Haut nicht dem Strahl aus (verwenden Sie z. B. Indikatorkarten),
- Öffnen Sie keine Öffnungen/Abdeckungen des Mikroskops/Systems, wenn eine Laseremission möglich ist,
- Berühren Sie keine Laseroptik und versuchen Sie nicht, einen Laser neu auszurichten, wenn Sie dazu nicht befugt sind,
- Schutzvorrichtungen (Schutzbrillen, Hinweisschilder) nicht umgehen,
- Tragen Sie keine Ringe, Armbänder oder andere reflektierende Materialien bei der Justage,
- Lassen Sie den Laser nicht eingeschaltet, wenn dies nicht erforderlich ist,
- Erlauben Sie unbefugten Personen nicht die Benutzung von Lasersystemen oder lassen Sie sie mit eingeschalteten Lasern allein.

Dos

- Befestigen Sie den Laser vor der Verwendung auf einem optischen Bank,
- Labortüren und Laserschutzvorhänge schließen, um Personen zu schützen,
- Vor dem Betreten eines Labors mit blinkender Laserwarnlampe anklopfen,
- Reduzieren Sie für Justagen die Laserleistung so weit wie möglich,
- Im Falle einer Fehlfunktion sofort den Vorgesetzten und den Laserschutzbeauftragten informieren.

Im Fall eines Unfalls

- Laser ausschalten, wenn möglich
- Ersthelfer kontaktieren
- Notruf wählen: 112
- Arzt aufsuchen (Augenarzt oder Dermatologe)
- Vorgesetzten und Laserschutzbeauftragten informieren

Betriebsärztlicher Dienst Apl. Prof. Dr. Henning Allmers

Dermatologie, Umweltmedizin, Gesundheitstheorie Universität Osnabrück

Sedanstr. 115

49090 Osnabrück

Phone.: 0541/3329

Room: 70/B25

Paracelsus Kliniken Augenabteilung

Am Natruper Holz 69 49076 Osnabrück

Tel.: 0541/609220 (Praxis)

Ihre Hautärzte Dr. med. Th. Rosenbach und Kollegen

Lotter Str. 58-61 49078 Osnabrück

Tel.: 0541/3 35 00-0

(Praxis)

Gleichgültigkeit ist Ihr Feind!

Wenn Sie Zweifel haben, dass Sie nicht mit sicheren Methoden oder Geräten arbeiten:

- Wenden Sie sich an Ihren Vorgesetzten und den Laserschutzbeauftragten!
- Sie haben ein Recht darauf, sicher zu arbeiten!

Rainer Kurre

Tel.: 0541-969-7338

E-mail: rainer.kurre@uos.de

Web: www.ibios.uos.de

Vielen Dank für die Aufmerksamkeit!